SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

COURSE OUTLINE

Course Title:	AUTO CONTROL SYSTEMS
Code No.:	ELN 208-3
Program:	INSTRUMENTATION TECHNI ^C I ^A N
Semester:	3
Date:	SEPTEMBER, 1985
Author:	R. PALO
	New: Revision:X
APPROVED:	Le Araquetto 85/09/09

CHAIRPERSON

DATE

ELN 208-3

- 2 -

PHILOSOPHY/GOALS:

To provide a basic understanding of pneumatic measurement and control applications.

GRADING:

1) Written tests conducted at regular intervals

2)	Grading	A	 76	-	100%	
		В	 66	-	75%	
		С	 50	-	65%	
		R	 les	55	than	50%

- 3) 70% for tests 30% for lab
- 4) Lecture and lab attendence mandatory

TEXTBOOK(S):

"Process Instrumentation and Control Fundamentals" "Pneumatic Measurement and Control Fundamentals" by General Physics Corp.

Course Outline

Block 1 - Basic Mechanical Devices

Topic	Chap	Hrs
Introduction Levers	1	1
Pulleys The wheel and axle Inclined plane		1
The screw Gears		1
		3

Block 2 - Pneumatic Instrument Components and Subassemblies

Topic	Chap	Hrs
Introduction Levers Beams	2	1
Springs		1
Spring scale The bourdon tube		1
Diaphragms Bellows		1
The diaphragm capsule Bellows - spring subassembly		1
Diaphragm - spring subassembly Rolling diaphragm - spring subasse	mbly	1
		6

Block 3 - The Flapper/Nozzle, The	Pilot Valve,	The Pneumatic	Relay
Topic	Chap		Hrs
Introduction Restrictions The flapper/nozzle detector	3		1
Pilot motion detector The pneumatic relay Direct acting bleed type relay			1
Reverse acting bleed type relay Direct acting non bleed type relay			1
			4

Block 4 - Force Balance Instruments

Topic	Chap	Hrs
Introduction The process variable transmitter,	4 feed fwd. type fwd. type	1
The displacement transmitter, feed The variable indicator, feedfwd ty	pe	1
The proportional controller, feedfor The actuator, feedford type Feedback instruments	wd type	1
Moment-balance feedback type instr		1
Process variable transmitter, mome The motion transmitter, moment-bal The variable indicator, moment-bal	ance feedback type	1
The proportional controller, momen	t-balance type	1
The actuator/positioner, moment-ba True force-balance feedback type		1
The process variable transmitter, The motion transmitter, true force	balance type	1
The variable indicator, true force The proportional controller, true The actuator/positioner, true forc	force balance type	1 1
		10

Block 5 - Motion-Balance Instruments

Topic	Chap	Hrs
Introduction	5	
Angle motion-balance feedback typ The process variable transmitter, The motion transmitter, angle mot	angle motion balance type	1
The recorder, angle motion balance		1
The proportional controller, angl The actuator/positioner, angle mo	tion balance type	1
Linear motion balance feedback ty The process variable transmitter		1
The motion transmitter, linear mo The recorder, linear motion balar The proportional controller, line	otion balance type nce type	1
The actuator/positioner, linear m		1

6

- 4 -

Block 6 - Pneumatic Measurement Instruments

Topic	Chap	Hrs
Introduction Temperature measurement instruments Foxboro model 12A temp. transmitter	6	1
Moore series 33 temp. transmitter Pressure measurement instruments		1
Foxboro model 45 pressure transmitter		1
Taylor 210 pressure transmitter Flow measurement GC-11 differential press. transmitter		1
Foxboro model 557 square root extract		1
Low signal cutoff Level measurement instruments		1
Foxboro model 13 differential pressur Fisher controls level-trol transmitte Pneumatic indication instruments		1
Moore series 2000 recorder		1
		8
Block 7 - Pneumatic Measuring Instrum	ment Arrangements	
Topic	Chap	Hrs

Introduction	7	
Instrument air systems		1
Air supply regulators		
Supply pressures and signal ranges		1
Signal transmission piping		1
Transmission lag		1
Process connections		1
Instruments mounting		T
Basic measurement loops		
Temperature measuring channel		1
Pressure measuring channel		
Flow measuring channel		
Level measuring channel		1
		6

Block 8 - Pneumatic Control Instruments

Topic		Chap	Hrs
Introduction		8	
Two-position	controller		1

- 5 -

Integral controller 1 Proportional-plus-integral controller Reset wind-up 1 Proportional-plus-derivative controller Proportional-plus-integral-plus-derivative controller 1 Fisher controls level-trol two-position controller 1 Masoneilan 3706 proportional controller Moore model 55 nullmatic proportional-plus-reset controller 1 Foxboro model 40 proportional-plus-derivative controller 1 Taylor proportional-plus-reset-plus-rate controller ----

7

Block 9 - Control Valves and Actuators

Topic	Chap	Hrs
Introduction Globe valves	9	- 1
Gate valves Checil valves		1
Butterfly valves Ball valves		1
Control valve actuators Diaphragm actuator Piston actuators		1
Electro-hydraulic actuators		1
Manual actuators Valve actuator selection		1
Control valve bodies and tri Single seated	n	1
Double seated Cage guided		1
Three-way Boot-style		1
Butterfly V-notch ball		1
Eccentric-disk Valve characteristics		1
Linear Quick-op <mark>ening</mark>		1
Equal percentage Inherent and installed chara	cteristics	1
Control valve selection Control valve sizing		1

- 6 -

Control valve noise Valve positioners 1 Fisher 3580 positioner Booster relays Handwheels Snubbers Pneumatic lock-up valves 1 17

Block 10 - Pneumatic Control Arrangements

Topic	Chap	Hrs
Introduct <mark>ion</mark> Basic control loop Temperature control	10	1
Pressure control loo		1
Flow control loop Level control loop		1
Cascade control Ratio control loop Feedforward control	loop	1
Computer relays Foxboro model 136 s	umming junction	 5

TOTAL HRS = 72

- 7 -

Specific Objectives

Block 1

The student shall be able to recall, explain or apply:

- 1) The force-motion relationship for; levers, pulleys, wheels and axles, inclined planes, screws and gears.
- 2) Mechanical advantage for above.
- 3) Types of gears.

Block 2

The student shall be able to recall, explain or apply:

- 1) Spring force-displacement relationship.
- 2) Types of beams and levers and applications.
- 3) Types of diaphragms and bellows and applications.
- 4) Types of link-lever mechanisms.
- 5) Angularity error and how it is eliminated.

Block 3

The student shall be able to recall, explain or apply:

- 1) The uses of a restriction.
- 2) Flapper nozzle detector for motion sensing.
- 3) The use of a pilot motion detector.
- 4) Pneumatic relay construction and types.

Block 4

The student shall be able to recall, explain or apply:

- 1) Characteristics of feedforward and feedback instruments.
- 2) The 5 possible functions performed by feedforward instruments.

Block 5

The student shall be able to recall, explain or apply:

1) Characteristics of angle and linear motion balance instruments.

Block 6

The student shall be able to recall, explain or apply:

1) How commercially available instruments use moment balance feedback, true force balance feedback, angle motion balance feedback and linear motion balance feedback to measure temperature, pressure, flow and level.

Block 7

The student shall be able to recall, explain or apply:

- 1) How clean dry plant air is made.
- 2) How it is distributed.
- 3) Standard instrument signal range.
- 5) Transmission lag.
- 6) Capacitance.
- 7) Correct installation of instrument sense lines.
- Advantage and disadvantage of pedestal and line mounted instruments.

Block 8

The student shall be able to recall, explain or apply:

- 1) The characteristics and application for the following control actions:
 - a) On-off or two position
 - b) Integral
 - c) Proportional-plus-integral
 - d) Proportional-plus derivative
 - e) Proportional-plus-integral-plus-derivative
- 2) How these control actions are implimented in pneumatic controllers.

Block 9

The student shall be able to recall, explain or apply:

- 1) Characteristics and application of various types of control valves; globe, gate, check, butterfly and ball.
- 2) Types and characteristics of valve actuators.
- 3) The 3 common valve flow characteristics.

- 4) How to size a control valve using the valve coefficient.
- 5) Control valve noise.
- 6) Function and characteristics of common pneumatic valve positioners.
- 7) Purpose of booster relays, snubbers and pneumatic lock-up valves.

Block 10

The student shall be able to recall, explain or apply:

- 1) Construction of a pneumatic to electronic signal converter.
- 2) Construction of an electronic to pneumatic signal converter.